top of page
Bandeau site WEB_edited.jpg

EFIS

ARBUSCULAR MYCORRHIZAL SYMBIOSIS EFFICACY

Soil microbes play critical roles in plant health. They are essential for plant nutrition and resistance to stress in natural environments. They are thus key actors in low input agriculture. Arbuscular mycorrhizal fungi are found in all soils and can interacts with most plant species, including crops.

They are known to improve both plant nutrition and resistance to stresses. However, efficacy of this symbiosis depends on both plant and fungal genetic factors. Moreover, communities of AM fungi are modulated by agricultural practices.

Our research aims to better understand the molecular mechanisms that explain the variability of arbuscular mycorrhiza efficacy to stimulate plant growth and resistance to stresses.

RESEARCH THEMES

tomato-root.jpg

A tomato root colonized by a Rhizophagus irregularis isolate. The fungus is stained by ink (blue). Arrows point to arbuscules. Arrowheads pointsextraradicalhyphae.

AM fungi penetrate root cortical cells and exchange nutrients through structures called arbuscules. AM fungi provide soil nutrients (phosphorus, nitrogen and other nutrients) to plants and benefit from fixed carbon (photosynthates) from the plants through carbohydrate and lipid transfers. AM fungi can also protect plants from biotic and abiotic stresses. This interaction is described as a mutualistic symbiosis, however AM efficacy on plant growth and/or plant resistance to stresses depends on both plant and AM fungal genotypes. We are interested in understanding the molecular mechanisms which influence the plant colonization by AM fungi and mycorrhizal responses.
 

TPMP.jpg

 Analysis of growth response of various Brachypodium distachyon ecotypes in the presence or abscence of a Rhizophagus irregularis isolate.


Symbiotic signals : Lipo-chitooligosaccharidic (LCO) and short chitooligosaccharidic (CO) produced by AM fungi are able to activate a host signalling pathway required for host colonization by AM fungi and are thus likely involved in mechanisms of host colonization.

To determine the role of signal molecules produced by AM fungi in the establishment of the symbiosis. To address this objective, we are characterizing plant LCO and CO receptors belonging to the subfamily of Receptor-Like Kinases (RLKs) containing LysM domains through a combination of reverse genetic and biochemical approaches.

Plant models: Solanaceae (Nicotiana benthamiana, Petunia hybrida and Solanum lycopersicum) and Poaceae (Brachypodium distachyon, Triticum turgidum and Triticum aestivum).

Current funding

  • Project SYMWAY (ANR, 2022-2026), coordinator: JF. Arrighi (LSTM)

  • Project MYCOBLE (FSOV, 2021-2025), coordinator: B. Lefebvre

  • Project GxACblé (Plant2Pro, 2024-2026), coordinator: B. Lefebvre

Past funding

  • Project WHEATSYM (ANR, 2017-2021), coordinator: B. Lefebvre

  • Projet Stress'n'Sym (Institut Carnot Plant2Pro, 2017-2020), coordinator: B. Lefebvre

  • Project DIBAM (SPE INRA, 2018-2019), coordinator: B. Lefebvre

  • Projet RHIZOWHEAT (IDEX ATS, 2016-2017), coordinator: C. Masson (LIPM)

  • Projet SPE (INRA, 2014-2015), coordinator: J. Cullimore (LIPM)

  • Projet LCOinNONLEGUMES (ANR young scientist, 2011-2014), coordinator: B. Lefebvre

  • PICS (CNRS, 2011-2012), coordinator: B. Lefebvre

Thèmes de recherche
Nom equipe

MEMBERS

Membres

PUBLICATIONS

  • (Preprint) Maviane-Macia F., Ribeyre C., Buendia L., Gaston M., Khafif M., Devoilles F., Peeters N., Lefebvre B. Experimental system and image analysis software for high throughput phenotyping of mycorrhizal growth response in Brachypodium distachyon. BioRxiv; DOI: 10.1101/779330
     

  • Cullimore J., Fliegmann J., Gasciolli V., Gibelin-Viala C., Carles N., Luu T.B., Girardin A., Cumener M., Maillet F., Pradeau S., Fort S., Bono J.J., Gough C., Lefebvre B. 2023. Evolution of lipochitooligosaccharide binding to a lysin motif receptor-like kinase for nodulation in Medicago truncatula. Plant Cell Physiol 64: 746–757; DOI: 10.1093/pcp/pcad033

  • Luu T.B., Carles N., Bouzou L., Gibelin-Viala C., Remblière R., Gasciolli V., Bono J.J., Lefebvre B., Pauly N., Cullimore J. 2023. Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108. Plant Science 332: 111696; DOI: 10.1016/j.plantsci.2023.111696

  • Wang T., Gasciolli V., Gaston M., Medioni L., Cumener M., Buendia L., Yang B., Bono J.J., He G., Lefebvre B. 2023. LysM-RLKs of the LYRIIIA group are immunity modulators that perceive LCO signals in mycotrophic plantsPlant Physiol 192: 1435–1448; DOI: 10.1093/plphys/kiad059

 

  • Bouchiba Y., Esque J., Cottret L., Maréchaux M., Gaston M., Gasciolli V., Keller J., Nouwen N., Gully D., Arrighi J.F., Gough C., Lefebvre B., Barbe S., Bono J.J. 2022. An integrated approach reveals how lipo-chitooligosaccharides interact with the lysin motif receptor-like kinase MtLYR3. Protein Science 31: e4327; DOI: 10.1002/pro.4327

 

  • Du D., Zhang C., Xing Y., Lu X., Cai L., Yun H., Zhang Q., Zhang Y., Chen X., Liu M., Sang X., Ling Y., Yang Z., Li Y., Lefebvre B., He G. 2020 The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnol J 19: 1052-1064; DOI: 10.1111/pbi.13530 

  • Lefebvre B. 2020. An opportunity to breed rice for improved benefits from the arbuscular mycorrhizal symbiosis? New Phytol 225:1404-1406; DOI:  10.1111/nph.16333 
     

  • Girardin A., Wang T., Ding Y., Keller J., Buendia L., Gaston M., Ribeyre C., Gasciolli V., Auriac M.C., Vernié T., Bendahmane A., Ried M.K., Parniske M., Vandenbussche M., Schorderet M., Reinhardt D., Delaux P.M., Bono J.J., Lefebvre B. 2019. LCO receptors involved in arbuscular mycorrhiza are functional for rhizobia perception in legumes. Current Biol 29: 4249-4259; DOI: 10.1016/j.cub.2019.11.038
     

  • Buendia L., Ribeyre C., Bensmihen S., Lefebvre B. 2019. Brachypodium distachyon tar2lhypo mutant shows reduced root developmental response to symbiotic signal but increased arbuscular mycorrhiza. Plant Signal Behav 14: e1651608; DOI: 10.1080/15592324.2019.1651608
     

  • Buendia L., Maillet F., O’Connor D., van de-Kerkhove Q., Danoun S., Gough C., Lefebvre B., Bensmihen S. 2019. LCOs promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. New Phytol, 221: 2190-2202; DOI: 10.1111/nph.15551
     

  • Buendia L., Girardin A., Wang T., Cottret L., Lefebvre B. 2018 LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. Front. Plant Sci 9: 1531; DOI: 10.3389/fpls.2018.01531
     

  • Gough C., Cottret L., Lefebvre B., Bono JJ. 2018. Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. Front Plant Sci 9: 923; DOI: 10.3389/fpls.2018.00923
     

  • Lefebvre B. 2017. Arbuscular mycorrhiza: A new role for N-acetylglucosamine. Nature Plants 3, 17085; DOI: 10.1038/nplants.2017.85 
     

  • Vernié T., Camut S., Camps C., Rembliere C., de Carvalho-Niebel F., Mbengue M., Timmers T., Gasciolli V., Thompson R., Le Signor C., Lefebvre B., Cullimore J., Hervé C. 2016. PUB1 interacts with the receptor kinase DMI2 and negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity in Medicago truncatula. Plant Physiol 170: 2312-2324; DOI: 10.1104/pp.15.01694
     

  • Buendia L., Wang T., Girardin A.  and Lefebvre B. 2016. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol 210, 184-195; DOI: 10.1111/nph.13753
     

  • Pietraszewska-Bogiel A., Lefebvre B., Koini M.A., Klaus-Heisen D., Takken F.L.W., Geurts R., Cullimore J., Gadella T.W.J. 2013. Interaction of Medicago truncatula Lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamianaleaf induces a defence-like response. PlosOne 8: e65055; DOI: 10.1371/journal.pone.0065055
     

  • Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac MC, Gasciolli V, Nurisso A, Gadella TW, Cullimore J. 2012. Role of N-glycosylation sites and CxC motifs in trafficking of Medicago truncatula Nod Factor Perception protein to plasma membrane. J Biol Chem 287: 10812-10823; DOI: 10.1074/jbc.M111.281634
     

  • Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., Pichereaux, C., Rossignol, M., Gadella, T.W.J., Imberty, A., Lefebvre, B., Cullimore, J. 2011. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4. J Biol Chem 286: 11202-11210; DOI: 10.1074/jbc.M110.186171
     

  • Mbengue, M., Camut, S., de Carvalho-Niebel, F., Deslandes, L., Froidure, S., Klaus-Heisen, D., Moreau, S., Rivas, S., Timmers, T., Hervé, C., Cullimore, J., Lefebvre, B. 2010. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22: 3474-3488; DOI: 10.1105/tpc.110.075861
     

  • Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., Bittencourt-Silvestre, J., Klaus, D., Deslandes, L., Godiard, L., Murray, J.D., Udvardi, M.K., Raffaele, S., Mongrand, S., Cullimore, J., Gamas, P., Niebel, A., Ott, T. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA 107: 2343-2348; DOI: 10.1073/pnas.0913320107

Publications
bottom of page