main.png

ECOGEN

ECOLOGICAL GENOMICS OF ADAPTATION IN PLANT COMMUNITIES

Welcome to the ECOGEN lab!

The main objective of our team is to understand and predict biotic interactions with plants in the context of global changes by establishing a continuum from molecular biology and quantitative genetics to evolutionary ecology. This lofty goal requests (i) the identification of the main ecological factors acting as selective agents on plants, (ii) the description of the genetic architecture underlying adaptation in plants, and (iii) the identification and understanding of genetic and molecular determinants of adaptation, in particular the ones involved in plant-microbiota-pathobiota interactions and plant-plant interactions.

Image1.png

We work on the wild plant Arabidopsis thaliana as well as on the crop species wheat, rapeseed and tomato. To achieve our scientific goals, we promote interdisciplinarity and we developed strong collaborations at the local, national and international levels. We also offer an environment that favors training in complementary disciplines (ecology, molecular biology and quantitative genetics) and career development in an international spirit.

 

You like our research! You want to join the team!  Feel free to contact any member of the team to initiate discussion. We may have some money on current projects or we can help you to apply for some fellowships (ERC, Marie-Curie, EMBO…).

Stay connected and follow us on Twitter @EcogenLab

 

OUR MAIN SCIENTIFIC QUESTIONS

Human activities generate numerous global changes, such as climate change, agricultural intensification, urbanization and landscape fragmentation. Global changes have major impacts on biodiversity. A potential lack of response of species to selection due to environmental changes would cause an erosion of biodiversity by disrupting ecosystems sustainably. This is especially important for plants whose dispersion is on average limited in comparison to animals. In this context, one of the main challenges in ecological genomics is to identify and understand the genetics of adaptation in plants. Adding ecology to the studies of adaptive genetics will help to estimate the adaptive dynamics of plants in response to natural selection and / or changes resulting from anthropogenic environments.

Image2.png

Establishing the causal relationship between adaptation and genetic changes is however extremely challenging in natural systems, largely due to the difficulties in identifying ecological factors acting as selective agents. In addition, we have to keep in mind that the adaptive potential response from a plant species to global changes will not only depend on its direct interactions with the abiotic environment, but also on the environmental effects on its biotic interactions (plant-microbiota-pathobiota interactions, plant-plant interactions…). In addition, our knowledge on adaptive dynamics of organism–organism interacting systems, and more precisely on co-evolution among several interacting species, remains surprisingly very limited. This is particularly relevant when studying the recruitment of mutations in biotic partners conferring the phenotypic variant likely to be retained by natural selection.

More precisely, we aim at answering to three key transversal questions:

  1. What are the main ecological factors (climate, soil physico-chemical properties, microbiota / pathobiota, plant communities…) acting as selection agents on plants?

  2. What are the genetic and molecular mechanisms of quantitative immunity, in ecologically relevant environments?

  3. What are the genetic and molecular mechanisms driving natural variation of plant-plant interactions, in particular competition and cooperation?

 
 

FUNDINGS

Running projects

  • 2021-2027: Projet ERC Synergy PATHOCOM (Understanding and predicting pathogen communities). 10 M€. PIs: Detllef Weigel, Fabrice Roux & Joy Bergelson.

  • 2021-2027: Projet PPR DEEP-IMPACT (Deciphering plant-microbiota interactions to enhance crop defense to pests). 3 M€. PI: Christophe Mougel . Co-PIs: Fabrice Roux & Fabienne Vailleau (200k€).

  • 2021-2025: Projet ANR PATHOSYM. Understanding the frontiers between PATHOgenicity and legume-rhizobia SYMbiosis. 571.8 k€. PI: Pascal Ratet, IPS2. Co-PI: Fabienne Vailleau (237.8 k€).

  • 2021-2023: Projet QuID. Département SPE - INRAE. Immunité quantitative chez Arabidopsis thaliana: dissection des voies de signalisation par l’analyse fonctionnelle d’un gène majeur, RKS1. 29 k€. Coordinatrice: Carine Huard-Chauveau.

  • 2019-2022: Réseau PLANTCOM INRAE-SPE. The genetics of plant-plant interactions. 5k€/year. PI: Fabrice Roux

  • 2021-2022: Projet PIPPIN. Département INRAE – SPE. Pathways involved in Plant-Plant interactions. 27k€. PI: Mathieu Hanemian

  • 2020-2023: Projet de thèse - Interactions plante-plante : analyse fonctionnelle d'un gène de réponse à la compétition chez Arabidopsis thaliana. Co-financement INRAE Département Santé des Plantes et Environnement (47 k€) - Région Occitanie (55 k€). Co-PIs: Dominique Roby & Mathieu Hanemian

  • 2020-2021: Projet CREA du métaprogramme SuMCrop (Sustainable Management of Crop Health). Collectif interdisciplinaire de réflexion sur l’utilisation des plantes de service pour la REgulation des bioAgresseurs en agriculture. 11.6 k€. PIs: Anne-Violette Lavoir & Delphine Moreau.  

  • 2020-2021: Projet Plant2Pro ALLELO. Bases génétiques des interactions plante-plante liées à l’exsudation dans la rhizosphère de métabolites spécialisés. 148 k€. Co-PIs: Catherine Rameau, Fabrice Roux et Alain Bouchereau.

Previous project (since 2013)

  • 2020: Allocation d’arrivée jeune chercheur - INRAE Département Santé des Plantes et Environnement. Mathieu Hanemian (10k€)

  • 2019-2021: Projet PLANTSYS. Innovation – Labex TULIP. Predicting plant phenotypes by systems biology. 134 k€. PI: Fabrice Roux (50 k€). Partenaire industriel: startup iMean (94 k€).

  • 2019-2020: Projet de la FR Agrobiosciences, Interactions et Biodiversité (Toulouse). Diversité naturelle du mucilage de populations régionales d’A.thaliana en relation avec leurs spécificités écologiques. 8 k€. Co-PIs: Christophe Dunand & Fabrice Roux. 

  • 2019-2020: Projet FACCTS. A genomic scan to dissect climate adaptation in phytopathogenic bacteria. 20 k$. Co-PIs: Joy Bergelson & Fabrice Roux. 

  • 2019-2020. Projet InterLabEx. Osmotic and pathogen crosstalks in roots: role of redOX signaling. 17.7 k€ LabEx TULIP. Co-PIs: Fabienne Vailleau & Lionel Verdoucq.

  • 2018-2021: Projet STARTER. AAP Innovation LabEx TULIP / Partnership with SYNGENTA. Studying in field conditions the impact of the microbiota on the pathogenicity of Ralstonia solanacearum on tomato across two seasons. 100 k€. Co-PIs: Fabienne Vailleau & Richard Berthomé.

  • 2018-2020: Projet OPTIMA. New Frontiers – Labex TULIP. A citizen project for establishing a genomic map of local adaptation in Arabidopsis thaliana to climate, soil and microbiota. 88 k€. PI: Fabrice Roux.

  • 2017-2020: Projet BURNED. Partnership with SYNGENTA, CIFRE PhD support. Identification of resistance mechanisms to Ralstonia solanaceraum and their characterization in Arabidopsis thaliana and tomato in a global warming context.105 k€. Co-PIs: Richard Berthomé & Fabienne Vailleau.

  • 2017-2020: Projet RETHINK. AAP Innovation LabEx TULIP / Partnership with SYNGENTA. Search for Sustainable Bacterial Wilt Resistance in Tomato using Host Natural Variability in a Global Warming Context. 68 k€. Co-PIs: Richard Berthomé & Fabienne Vailleau.

  • 2017-2021: Projet de thèse - Deciphering Arabidopsis thaliana responses to bacterial virulence factors of Ralstonia solanacearum through the study of natural variation of both biotic partners. Co-financement INRAE Département Santé des Plantes et Environnement (47 k€) - Région Occitanie (55 k€). Co-PIs: Fabienne Vailleau & Richard Berthomé

  • 2017: Projet de la FR Agrobiosciences, Interactions et Biodiversité (Toulouse). Identification des bases génétiques de la réponse d’Arabidopsis thaliana à la présence de légumineuses. 4k€. Co-PIs: Fabrice Roux & Andreas Niebel.

  • 2017-2018: Projet France and Chicago Collaborating in The Sciences (FACCTS). Evolution of R genes in plants. 20 k$. Co-PIs: Joy Bergelson & Fabrice Roux. 

  • 2017-2020: Projet de thèse - Analyse éco-fonctionnelle d’une kinase atypique conférence une résistance quantitative à la bactérie phytopathogène Xanthomonas campestris. Co-financement INRAE Département Santé des Plantes et Environnement (47 k€) - Région Occitanie (55 k€). Co-PIs: Dominique Roby & Fabrice Roux.

  • 2016-2019: Projet de thèse - Identification chez Arabidopsis thaliana des bases génétiques de la résistance à Ralstonia solanacearum dans un contexte de réchauffement climatique. Cofinancement INRAE Département Santé des Plantes et Environnement (47 k€) - Région Occitanie (55 k€). Co-PIs: Richard Berthomé & Fabrice Roux.

  • 2016–2018: Projet ADORABLE. Département INRAE – SPE. Identification of genetic factors underlying potential disease outbreaks of the bacterial pathogen Xanthomonas campestris. 40 k€. PI: Fabrice Roux. 

  • 2016–2017: Projet de la FR Agrobiosciences, Interactions et Biodiversité (Toulouse). Effet de changements climatiques sur le trade-off croissance/réponse aux bioagresseurs chez Arabidopsis thaliana. 10 k€. PI: Fabrice Roux. 

  • 2014-2019: Projet ANR RIPOSTE. Exploitation of pathogen quantitative resistance diversity to improve disease resistance tolerance in crops. 496 k€. PI: Dominique Roby (191 k€). Co-PI: Fabrice Roux (248 k€).

  • 2014-2015: Projet RESURRECTION. Département INRAE – SPE. Une étude de résurrection pour étudier l’évolution phénotypique et génomique d’une population naturelle d’Arabidopsis thaliana face à la compétition interspécifique d’une graminée adventice. PI : Fabrice Roux. 30k€.

  • 2014-2017: Projet CLIMARES. Région Midi-Pyrénées, programme « Accueil de nouvelles équipes d’excellence ». Étudier le potentiel des populations naturelles végétales face au changement climatique en identifiant les gènes associés à la résistance aux pathogènes. PI : Fabrice Roux. 236k€.

  • 2013-2018 : Starting grant Labex TULIP. Ecological genomics of organism – organism interactions: cases of plant – pathogen and plant – plant interactions. PI : Fabrice Roux. 250 k€.

  • 2012-2016 : Projet CYTOPHENO. ANR BIOADAPT. Cyto-nuclear co-adaptation and plant adaptive phenotypes. 500 k€. PI : Françoise Budar (INRA IJPB, Versailles). Co-PI: Fabrice Roux (25 k€). 

  • 2011-2019 : Contrat ANR-Investissement d’Avenir LabEx TULIP "Towards a Unified Theory of biotic Interactions: roLe of Environmental Perturbations"  Coordinators  Dominique Roby / Etienne Danchin, 9 000 k€

  • 2009-2014 : ANR Blanc, projet QUANTIREX. Identification of key genes underlying quantitative resistance to Xanthomonas campestris in Arabidopsis thaliana by Genome Wide Association mapping and QTL analysis. 395 k€. PI : Dominique Roby  (240 k€). Co-PI : Fabrice Roux (155 k€).

 
 

PUBLICATIONS

  • Libourel C., E. Baron, J. Lenglet, L. Amsellem, D. Roby and F. Roux. 2021. The genomic architecture of competitive response of Arabidopsis thaliana is highly flexible between monospecific and plurispecific neighborhoods. Frontiers in Plant Science 12:741122.

  • Delplace, F., C. Huard-Chauveau, R. Berthomé* and Dominique Roby*. 2021. Network organization of the plant immune system: from pathogen perception to robust defense induction. The Plant Journal, https://doi.org/10.1111/tpj.15462. *Authors contributed equally to this work.

  • Demirjian, C.*, N. Razavi*, H. Desaint, F. Lonjon, S. Génin, F. Roux, R. Berthomé* and F. Vailleau*. 2021. Study of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals new susceptible genes in Arabidopsis thaliana. Molecular Plant Pathology. *Authors contributed equally to this work.

  • Subrahmaniam, J., D. Roby and F. Roux. 2021. Towards unifying evolutionary ecology and genomics to understand positive plant-plant interactions within wild species. Frontiers in Plant Science 12:683373.

  • Bergelson, J.*, B. Brachi*, F. Roux* and F. Vailleau*. 2021. Assessing the potential to harness the microbiome through plant genetics. Current Opinion in Biotechnology 70:167-173. *Authors contributed equally to this work.

  • Lannou, C., Roby, D., Ravigné, V., Hannachi, M., Moury, B. 2021. L'immunité des plantes: Pour des cultures résistantes aux maladies. Editions Quae.

  • Rubio, B., O. Fernandez, P. Cosson, T. Breton, M. Caballero, R. Lion, F. Roux, J. Bergelson, Y. Gibon and V. Schurdi-Levraud. 2021. Metabolic profile discriminates and predicts Arabidopsis susceptibility under field conditions. Metabolites 11:230.

  • Desaint, H.*, N. Aoun*, L. Deslandes, F. Vailleau, F. Roux and R. Berthomé. 2021. Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist 229:712-734. *Authors contributed equally to this work.

  • Hanemian M, Vasseur F, Marchadier E, Gilbault E, Bresson J, Gy I, Violle C, Loudet O. 2020. Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana.  Nature Communications 11:4140.

  • Yarahmadov T*, Robinson S*, Hanemian M*, Pulver V, Kuhlemeier C. 2020. Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes. The Plant Journal 104:289-301. *Authors contributed equally to this work.

  • Aoun, N., H. Desaint, L. Boyrie, M. Bonhomme, L. Deslandes, R. Berthomé and F. Roux. 2020. A complex network of additive and epistatic QTLs underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. Molecular Plant Pathology 21:1405-1420. 

  • Delplace, F.*, C. Chauveau*, U. Dubiella, M. Khafif, E. Alvarez, G. Langin, F. Roux, R. Peyraud and D. Roby. 2020. Robustness of plant quantitative disease resistance is provided by a decentralized immune network. Proc. Natl. Acad. Sci. USA 117(30):18099-18109. *Authors contributed equally to this work.

  • Lonjon, F., D. Rengel, F. Roux, C. Henry, M. Turner, A. Le Ru, N. Razavi, C.R.R. Sabbagh, S. Génin and F. Vailleau. 2020. HpaP guards HrpJ, an essential component of Ralstonia solanacearum virulence, able to trigger necrosis in Arabidopsis. Molecular Plant-Microbe Interactions 33(2): 200-211.

  • Thiergart, T.*, P. Duran*, T. Ellis*, R. Garrido-Oter, E. Kemen, F. Roux, C. Alonso-Blanco, J. Agren, P. Schulze-Lefert and S. Hacquard. 2020. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology and Evolution 4: 122-131. *Authors contributed equally to this work.

  • Frachon, L.*, B. Mayjonade*, C. Bartoli*, N.C. Hautekèete and F. Roux. 2019. Adaptation to plant communities across the genome of Arabidopsis thaliana. Molecular Biology and Evolution 36(7):1442-1456. *Authors contributed equally to this work.

  •  

  • Rubio, B., P. Cosson, M. Caballero, F. Revers, J. Bergelson, F. Roux and V. Schurdi-Levraud. 2019. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuLM) interactions in the field. New Phytologist 221:2026-2038.

  • Wang, M.*, F. Roux*, C. Bartoli, C. Huard-Chauveau, H. Lee, C. Meyer, D. Roby, M.S. McPeek and J. Bergelson. 2018. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc. Natl. Acad. Sci. USA 115(24):E5440-E5449. *Authors contributed equally to this work.

  • Bartoli, C.*, L. Frachon*, M. Barret, M. Rigal, C. Huard-Chauveau, B. Mayjonade, C. Zanchetta, O. Bouchez, D. Roby, S. Carrère and F. Roux. 2018. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana. The ISME Journal 12:2024-2038. *Authors contributed equally to this work.

  • Pujol, B., S. Blanchet, A. Charmantier, E. Danchin, B. Facon, P. Marrot, F. Roux, I. Scotti, C. Téplitsky, C.E. Thomson and I. Winney. 2018. The missing response to selection in the wild. Trends in Ecology and Evolution 33(5): 337-346.

  • Fulgione, A., M. Koornneef, F. Roux, J. Hermisson and A. Hancock. 2018. Evolutionary dynamics of island colonization: Arabidopsis thaliana from the island of Madeira. Molecular Biology and Evolution 35(3): 564-574.

  • Subrahmaniam, J., C. Libourel, E.-P. Journet, J.-B. Morel, S. Muños, A. Niebel, S. Raffaele and F. Roux. 2018. The genetics underlying natural variation of plant-plant interactions: a beloved but forgotten member of the family of biotic interactions. The Plant Journal 93: 747-770.

  • Frachon, L.*, C. Libourel*, R. Villoutreix, S. Carrère, C. Glorieux, C. Huard-Chauveau, M. Navascués, L. Gay, R. Vitalis, E. Baron, L. Amsellem, O. Bouchez, M. Vidal, V. Le Corre, D. Roby, J. Bergelson and F. Roux. 2017. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology & Evolution 1: 1551-1561. *Authors contributed equally to this work.

  • Aoun, N., L. Tauleigne, F. Lonjon, L. Deslandes, F. Vailleau, F. Roux and R. Berthomé. 2017. Quantitative disease resistance under elevated temperature: genetic basis of new resistance mechanisms to Ralstonia solanacearum. Frontiers in Plant Science 8:1387.

  • Bartoli, C. and F. Roux. 2017. Genome-Wide Association studies in plant pathosystems: towards an ecological genomics approach. Frontiers in Plant Science 8: article 763.

  • Gascuel, Q., A. Bordat, E. Sallet, N. Pouilly, S. Carrère, F. Roux, P. Vincourt and L. Godiard. 2016. Polymorphic effectors of the sunflower downy mildew pathogen Plasmopara halstedii, used as a tool for identifying field isolates, suggest an on-going adaptive dynamics of pathogen virulence. PLoS One 11(2): e0148513.

  • Roux, F. and J. Bergelson. 2016. The genetics underlying natural variation in the biotic interactions of Arabidopsis thaliana: the challenges of linking evolutionary genetics and community ecology. Current Topics in Developmental Biology 119: 111-156.

  • Debieu, M., C. Huard-Chauveau, A. Génissel, F. Roux and D. Roby. 2016. Quantitative Disease Resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function. Molecular Plant Pathology 17(4): 510-520.

  • Roux, F., T. Mary-Huard, E. Barillot, E. Wenes, L. Botran, S. Durand, R. Villoutreix, M.L. Martin-Magniette, C. Camilleri and F. Budar. 2016. Cytonuclear interactions affect adaptive phenotypic traits of the annual plant Arabidopsis thaliana in the field. Proc. Natl. Acad. Sci. USA 113(13): 3687-3692.

  • Bartoli, C., F. Roux and J.-R. Lamichhane. 2016. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective. Molecular Plant Pathology 16(8): 860-869.

  • Baron, E., J. Richirt, R. Villoutreix, L. Amsellem and F. Roux. 2015. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Functional Ecology 29: 1361-1370.

  • Brachi, B., C. Meyer, R. Villoutreix, A. Platt, F. Roux and J. Bergelson. 2015. Co-selected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. PNAS 112(3): 4032-4037.

  • Karasov, T.L., J.M. Kniskern, L. Gao, B.J. DeYoung, J. Ding, U. Dubiella, R. Lastra, S. Nallu, F. Roux, R.W. Innes, L.G. Barrett, R.R. Hudson and J. Bergelson. 2014. The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512: 436-440.

  • Roux, F., L. Noel, S. Rivas and D. Roby. 2014. Atypical kinases: emerging signaling components of plant immunity. New Phytologist 203: 713-716.

  • Roux, F., D. Voisin, T. Badet, C. Balagué, X. Barlet, C. Huard-Chauveau, D. Roby and S. Raffaele. 2014. Resistance to phytopathogens e tutti quanti: placing Quantitative Disease Resistance on the map. Molecular Plant Pathology 15(5): 427 – 432. 

  • Brachi, B., N. Faure, J. Bergelson, J. Cuguen and F. Roux. 2013. Genome-wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years. Acta Botanica Gallica – Botany Letters 160: 205-218. Special Issue ‘Quantitative genetics in natural populations’.

  • Huard-Chauveau, C., L. Perchepied, M. Debieu, S. Rivas, I. Kars, J. Bergelson, F. Roux and D. Roby. 2013. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genetics 9(9): e1003766.

  • Brachi, B., R. Villoutreix, N. Faure, N. Hautekèete, Y. Piquot, M. Pauwels, D. Roby, J. Cuguen, J. Bergelson and F. Roux. 2013. Investigation of the geographical scale of adaptive phenological variation and its underlying genetic bases in Arabidopsis thaliana. Molecular Ecology 22: 4222-4240.

COLLABORATIONS

  • Local collaborations : Richard Berthomé, Laurent Deslandes, Benjamin Gourion, Andreas Niebel, Stéphane Munos (LIPME, INRAE, Toulouse); Maxime Bonhomme, Pierre-Marc Delaux & Christophe Dunand (LRSV, Toulouse), startup iMean.

  • National collaborations: Claudia Bartoli & Christophe Mougel (IGEPP, Rennes);  Lionel Verdoucq (LBPMP, Montpellier); Jean-Philippe Reichheld (LGDP, Perpignan); Pascal Ratet (ISP2, Saclay); Françoise Budar, Christine Camilleri, Alexandre de Saint-Germain & Catherine Rameau (IJPB, Versailles); Mathieu Gautier (CBGP, Montpellier); Valérie Schurdi-Levraud (BFP, Bordeaux).

  • International collaborations: Joy Bergelson (New-York University, USA); Detlef Weigel (MPI Tübingen, Germany); Angela Hancock, Stéphane Hacquard & Paul Schulze-Lefert (MPI Cologne, Germany); Léa Frachon (University of Zurich, Suisse); Alberto Macho (Shanghai Center of Plant Stress Biology, China).

 

OUTREACH

  • Mise en place du projet de science participative OPTIMA visant à tester l’adaptation d’Arabidopsis thaliana aux communautés microbiennes du sol. Ce projet a reposé sur la mise à disposition de jardins de 47 participants (retraités, école, conservatoire botanique, réserves naturelles…) qui ont effectué des prises de photos de plantes pendant l’hiver 2018-2019.

  • Intervention lors d’une rencontre-échange scientifique Exploreur sur le thème ‘Quand les citoyens se mobilisent pour étudier l’adaptation des plantes à leur environnement !’ au Quai des Savoirs. Juin 2021. Toulouse France.

  • Séminaire de vulgarisation dans le cadre du ‘Jeudi Sciences’ organisé par la FR AIB. Comment les espèces s’adaptent à leur environnement ? Octobre 2019. Toulouse, France.

  • Restitution des premiers résultats du projet de science participative OPTIMA aux élèves de CM1 et de CM2 de l’école de Tarabel. Juin 2019. Tarabel, France.

  • Participation de l’équipe ECOGEN aux trois premières journées du Salon International de l’Agriculture. Février 2019. Paris, France.

  • Participation de l’équipe ECOGEN aux deux journées ‘Accueil Portes ouvertes Inra Toulouse’. Octobre 2016. Toulouse, France.

  • Participation de l’équipe ‘Génomique écologique de l’adaptation dans les communautés végétales’ au kiosque Museum ‘De la graine à la plante’. Juin 2016. Toulouse, France.

  • Participation de l’équipe ‘Génomique écologique de l’adaptation dans les communautés végétales’ au kiosque Museum ‘Des petits pois de Mendel à l’épigénétique, 150 ans de révolutions en génétique’. Février 2016. Toulouse, France.

Carine Chauveau

  • Forum des métiers, collège Montesquieu Cugnaux (2019)

  • European Science Open Forum (2018)

  • Journées Portes Ouvertes du Laboratoire et fête de la Science (2006, 2010, 2013)